

TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC DIVISION DE INGENIERÍA ELECTRÓNICA Y TELEMÁTICA

NOMBRE DEL MATERIAL DIDÁCTICO:

Prácticas de Análisis de Circuitos Eléctricos I

ASIGNATURA:

Análisis de Circuitos Eléctricos 1

PROFESOR:

M. en C. León Domínguez Ma. Cristina

INTRODUCCIÓN

El presente trabajo tiene como objetivo servir de apoyo práctico a la asignatura de Análisis de Circuitos Eléctricos I, de la Carrera de Ingeniería Electrónica y Telemática del, Tecnológico de Estudios Superiores Ecatepec del plan de estudios de la DGTI 1993, así como también una guía a los docentes que tengan que impartir esta asignatura y a los alumnos

Contiene 13 prácticas desarrolladas con base al contenido del plan de estudio, donde se trata de cubrir al 100% todos los temas de mayor relevancia del programa.

Cada práctica contiene su objetivo, el material a utilizar, el equipo requerido para desarrollar la práctica, así como también un cuestionario el cual tiene como fin reafirmar los conocimientos adquiridos en su proceso.

Finalmente, espero recibir comentarios y criticas de las personas que usen este texto para que pueda ser mejorado o corregido.

Contenido

Introducción

Práctica 1	Circuito en Serie	1
Práctica 2	Diseño de un Circuito en Serie	5
Práctica 3	Circuitos Divisores de Voltaje (Sin Carga)	8
Práctica 4	Corriente en un Circuito en Paralelo	12
Práctica 5	Resistencia de Circuito en Serie - Paralelo	16
Práctica 6	Ley de Voltaje de Kirchhoff	20
Práctica 7	Ley de Corriente de Kirchhoff	23
Práctica 8	Circuitos Divisores de Voltaje (Con Carga)	26
Práctica 9	Diseño de Circuitos Divisores de Voltaje y Corriente	30
Práctica 10	Teorema se Superposición	33
Práctica 11	Teorema de Thevenin	36
Práctica 12	Teorema de Norton	40
Práctica 13	Teorema de Millman	44
Bibliografía		48

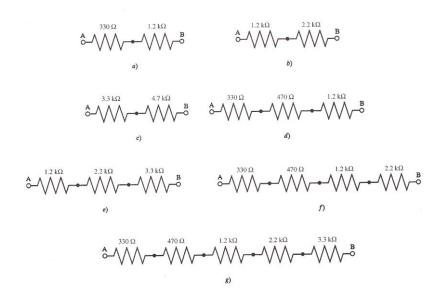
PRÁCTICA Nº 1 CIRCUITOS EN SERIE

Objetivos:

- Verificar experimentalmente cual es la resistencia total, R_T , en un circuito en que los resistores, R_1 , R_2 , R_3 ... están conectados en serie.
- Desarrollar una formula, basada en resultados experimentales, que de la resistencia total, R_T , de resistores conectados en serie.

Equipo:

- Fuente de alimentación Variable de O a 15 V de cd, regulada.
- MMD o VOM Miliamperímetro de O a IOmA.


Material:

Resistores (5%, ½ W)

- 1 de 330 Ω
- 1 de 470 Ω
- 1 de 1.2 kΩ
- 1 de 2.2 kΩ
- 1 de 3.3 kΩ
- 1 de 4.7 kΩ
- Interruptor de un polo un tiro.

Parte A: determinación de R_T de resistores conectados en serie por el método del óhmetro.

- **A1.** Mida cada una de las resistencias y registre los valores en la tabla 1-1.
- **A2.** Con los símbolos R_1 , R_2 , R_3 , R_4 , R_5 y R_6 escriba una formula para calcular la R_T de cada combinación en la tabla 1-2.
- **A3.** Con los valores medidos de la tabla 1-1 calcule el valor de la resistencia total para cada una de las combinaciones de la figura 1-A anotando los valores en la tabla 1-2 en la columna de valor calculado.

A4. Mida entre A y B para cada combinación de la tabla 1-2 y registre el valor en la columna valor medido.

Parte B: Determinación de R_T para resistores conectados en serie mediante la ley de ohm.

- **B1.** Arme el circuito de la figura 1-B y conecte cada una de las combinaciones de la figura 1-A aplicando al circuito una alimentación de 10v. Registre los valores de V e I en la tabla 1-3.
- **B2.** A partir de los valores medidos de V e I calcule R_T según la ley de ohm.

$$R_T = V/I$$

- **B3.** Traslade los valores de R_T calculado de la tabla 1-2, a la tabla 1-3.
- **B4.** Escribe una formula general para cualquier combinación de resistencias conectadas en serie.

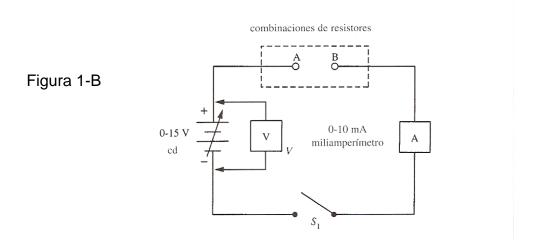


Tabla 1-1 Valor medido de resistores

Resistor	R_1	R_2	R_3	R_4	R_5	R_6
Valor nominal, Ω	330	470	1.2 k	2.2 k	3.3 k	4.7 k
Valor medido, Ω						

Tabla 1-2 Resistencia total de resistores método 1

		Valor nominal del resistor, Ω						stencia total $R_{T},~\Omega$	
Combinación	R_1	R_2	R_3	R_4	R_5	R_6	Valor calculado	Valor medido	Fórmula para R _T
а	330		1.2 k						
b			1.2 k	2.2 k					
С					3.3 k	4.7 k			
d	330	470	1.2 k						
e			1.2 k	2.2 k	3.3 k				
f	330	470	1.2 k	2.2 k					
g	330	470	1.2 k	2.2 k	3.3 k				

Tabla 1-3 Resistencia total método 2

Combinación	Voltaje aplicado (V), V	Corriente medida (I), mA	Ley de Ohm $R_T = \frac{V}{I}$	Resistencia total, R_T , en Ω , valor calculado de la tabla 8-2	Fórmula para R_T
а					
b					
С					
d				ă)	
e	·				
f					
g			AND		

Cuestionario:

1. 	Explique los dos métodos que usó en este experimento para hallar la resistencia total de un circuito en serie.
2.	¿Por qué fue necesario medir la resistencia de cada resistor individua con un óhmetro para satisfacer los objetivos de este experimento?
3.	Examine sus datos en las tablas 1-1 y 1-2. ¿Los resultados sugierer alguna fórmula general para encontrar la resistencia total de un grupo de resistores conectados en serie? Explique las razones de su respuesta.
4.	Compare los valores medidos de R⊤ con los calculados en la tabla 1-2 Si no son exactamente iguales, ¿cómo explica las diferencias?
5.	Compare el valor de la resistencia total calculada según la ley de Ohm y la corriente medida en la tabla 1-3 con el valor calculado de la resistencia total de la tabla 1-2. De no ser exactamente iguales, ¿cómo explica la diferencia?
6.	Si la posición de los resistores en serie R_1 , R_2 , R_3 , R_4 se intercambiara por ejemplo, R_1 , R_4 , R_2 , R_3 ó R_3 , R_1 , R_2 , R_4 , ¿cuál sería el efecto sobre la resistencia total del conjunto?

PRÁCTICA Nº 2 DISEÑO DE CIRCUITOS EN SERIE

Objetivos:

- Diseñar un circuito en serie que cumpla requisitos específicos de resistencia.
- Diseñar un circuito en serie que satisfaga requisitos específicos de voltaje y corriente.
- Diseñar un circuito en serie que cumpla requisitos específicos de corriente y resistencia.
- Construir y probar los circuitos para determinar si cumplen los requisitos del diseño.

Equipo:

- Fuente de alimentación Variable de O a 15 V de cd, regulada.
- MMD o VOM Miliamperímetro de O a IO mA.

Material:

Resistores (5%, ½ W)

• 1 de 330 Ω

• 1 de 470 Ω

1 de 1.2 kΩ

1 de 2.2 kΩ

1 de 3.3 kΩ

1 de 4.7 kΩ

Interruptor de un polo un tiro.

Los 6 resistores empleados se identificaran como sigue:

 R_1 =330Ω R_4 = 2.2 KΩ R_2 = 470Ω R_5 = 3.3 KΩ R_3 = 1.2KΩ R_6 = 4.7 KΩ

- 1.- Remítase a la tabla 2-1. En el primer renglón, R_T requerida Ω , Seleccione tres resistores de entre R_1 a R_6 que, cuando se conecten en serie, tengan una resistencia de 2 k Ω . Registre los valores nominales en la columna de cada resistor.
- 2.- Repita el paso anterior para las restantes resistencias totales de 5.3 k Ω , 7.5 k Ω , 10 k Ω Y 11 k Ω . Registre todos los valores en la tabla 2-1. Al terminar este paso, la columna " R_T medida" debe estar llena por completo.
- 3.- Diseñe un circuito en serie que produzca una corriente de 5 mA cuando se le suministren 10 V. Anote los valores elegidos en la tabla 2-2 en el renglón de V aplicado.
- 4.- Con la alimentación apagada y el interruptor SI abierto, arme el circuito de la figura 2-A. Use el miliamperímetro de O a IOmA.

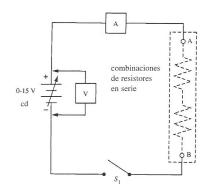


Figura 2-A

- 5.- Ajuste la fuente de alimentación hasta que el voltímetro indique 10 V. Lea el mili amperímetro y anote el valor en la columna "Corriente del circuito medida" repita para las combinaciones siguientes de V e I.
- 6.- Diseñe un circuito que extraiga 4 mA. Obviamente con los mismos resistores, el voltaje puede variar de O a 15 V. Registre los valores medidos en la tabla 2-3, así como el valor de diseño del voltaje que se aplicará al circuito.

Tabla 2-1 valores medidos contra nominales

$R_{\scriptscriptstyle T}$ requerida Ω	R_1	R_2	R_3	R_4	R_5	R_6	$R_{\scriptscriptstyle T}$ medida Ω
2 k							
5.3 k							
7.5 k							
10 k	,						
11 k							

Tabla 2-2 Valores específicos de V e I.

V aplicado V	Requerida	Medida	R_1	R_2	R_3	R_4	R_5	R_6
10	5 mA							
12	4 mA							
5.5	1 mA							
8	10 mA							
11.4	1 mA							

Tabla 2-3 Extracción de 4mA.

		V aplicado, valor de	1 1: 1-					
Combinación	R_1	R_2	R_3	R_4	R_5	R_6	diseño, V	I medida, mA
1 (2 resistores)								
2 (3 resistores)								
3 (4 resistores)								

Cuestionario:

	Con los datos de la tabla 2-1 compare el valor requerido de R_T con su valor medido para cada una de las cinco resistencias. ¿Son iguales? S no lo son, explique por que. En cada caso, si hay diferencia, ¿esta de acuerdo con la tolerancia de los resistores individuales?
2.	Con los datos de la tabla 2-2 compare cada valor de la corriente requerida con la corriente medida. ¿son iguales? .Si no lo son, explique por que.
3.	A partir de los datos de la tabla 2-3 compare la corriente medida con e valor de diseño de 4 mA para cada una de las tres combinaciones de resistores. ¿Son iguales? Si no lo son, explique por que el valor medido no es igual a 4 mA.
4.	Se conectan en serie tres resistores de ½ W, 5%. Sus valores según e código de colores, son 1 k Ω, 5 kΩ y 10 kΩ. ¿Cuál seria el posible intervalo de lecturas del óhmetro, si este tiene 0% de error? Muestre todos los cálculos.

PRÁCTICA Nº 3 CIRCUITOS DIVISORES DE VOLTAJE (SIN CARGA)

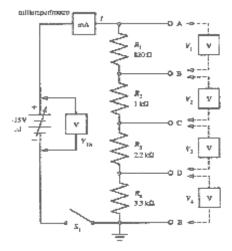
Objetivos:

- Desarrollar una regla general para calcular el voltaje en cada resistor en un divisor de voltaje resistivo fijo sin carga.
- Verificar la regla desarrollada en el objetivo 1.
- Calcular el voltaje con respecto al común en cada punto de un divisor de voltaje resistivo variable.
- Verificar experimentalmente los resultados del objetivo 3.

Equipo:

- Fuente de alimentación Variable de O a 15 V de cd, regulada.
- MMD o VOM Miliamperímetro de O a IOmA.

Material:


Resistores (5%, ½ W)

- 1 de 820Ω
- 1 de 1kΩ
- 1 de 2.2 kΩ
- 1 de 3.3 kΩ
- Potenciómetro de 10 kΩ, 2W
- Interruptor de un polo un tiro

A. Mediciones en un divisor de voltaje fijo

A1. Arme el circuito de la figura 3-A

Figura 3-A

- A2. Ajuste la fuente de alimentación a 15v.
- **A3.** Conecte el voltímetro entre cada una de la terminales para leer los voltajes en las resistencias y registre todos los valores en la tabla 3-1.
- **A4.** Mida el voltaje entre B y E, entre C y E y entre D y E registre todos los valores en la tabla 3-1.
- **A5.** Use la figura 3-A, los valores nominales de los resistores y un voltaje de la fuente de 15v para calcular la *I* suministrada por la fuente. Registre sus respuestas en la tabla 3-1.
- **A6.** Ajuste la fuente de modo que el miliamperímetro indique 1.5 mA.
- **A7.** Con el valor de los resistores y una corriente de 1.5 mA, calcule los voltajes de la tabla 3-1.

B. Mediciones en un divisor de voltaje variable

- **B1.** Arme el circuito de la figura 3-B, con una alimentación de 15v.
- **B2.** Gire el potenciómetro al máximo en sentido de las manecillas del reloj. Mida V_{AB} , V_{BC} e I, registre los valores en la tabla 3-2.
- **B3.** Gire el eje del potenciómetro hasta la Terminal media entre A y C. Mida V_{AB}, V_{BC} e I y registre los valores en la tabla 3-2.
- **B4.** Gire el eje en el sentido contrario de las manecillas del reloj hasta el máximo. Mida y registre V_{AB} , V_{BC} e I en la tabla 3-2.

- **B5.** Manteniendo el voltaje de 15v, ajuste el potenciómetro hasta que V_{BC} sea igual a 9v. Mida y registre en la tabla 3-3.
- **B6.** Mida la resistencia entre AB (R_{AB}), BC (R_{BC}) y AC (R_{AC}) y registre los valores en la tabla 3-3.
- **B7.** Con V=15v y R_T=10k Ω del potenciómetro, calcule los valores de R_{AB} y R_{BC} necesarios para que V_{Bc} = 9v.

C. Diseño de circuitos divisores de voltaje.

C1. Diseñar un circuito divisor de voltaje que suministre un voltaje variable de 0 a 11.5v, a partir de una fuente de 15v constantes, utilizando resistores fijos y variables utilizados anteriormente. Dibuje un diagrama del circuito con valores de los componentes. Arme el circuito y mida Voltajes y corrientes tabule los resultados.

Tabla 3-1 Mediciones en un divisor de voltaje fijo parte A.

	Posición de la		Valores	Valores calculados		
Paso	terminal móvil	V	I (mA)	$V_{ m AB}$	V_{BC}	$V_{ m BC} + V_{ m AB}$
B2	En A	15				
В3	Punto medio	15				
B4	En C	15				

Tabla 3-2 Mediciones en divisor de voltaje variable parte B.

Paso		V	I (mA)	V_1	V_2	V_3	V_4	$V_{\rm BE}$	$V_{\rm CE}$	$V_{ m DE}$
A3, A4	Medido	15								
A5	Calculado									
A6	Medido									
A7	Calculado									

Tabla 3-3 Valores del divisor de voltaje variable

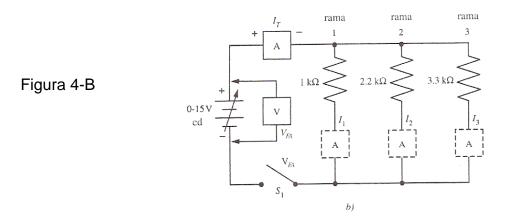
V	I (mA)	$V_{ m BC}$	V_{AB}	R_{BC}	R_{AB}	R_{AC}	R_{BC}	R_{AB}
15		9						

Cuestionario

 Con base en la tabla 3-1 compare los valores medidos de V₁, V₂, V₃ y V₄ (paso A3) con sus respectivos valores calculados (paso A5). Si alguno de los valores correspondientes no son iguales, explique las diferencias.
 A partir de la tabla 3-1 compare los valores medidos de V₁, V₂, V₃ y V₄ V_{BE}, V_{CE} y V_{DE} (paso A6) con sus respectivos valores calculados (paso A 7). Si algunos de los valores no son iguales, explique las diferencias.
 3. Con los datos de la tabla 3-3: a) Calcule las razones V_{BC} / V_{AB} y R_{BC} / R_{AB}. b) ¿Las razones de a) son iguales? ¿Deberían serlo? ¿Por qué? c) ¿Cómo se relacionan los valores medidos de R_{AB}, R_{BC} Y R_{AC}? d) Explique el efecto sobre la corriente I (medida) conforme se mueve la terminal móvil del potenciómetro.
4. A partir de los datos de la tabla 10-2, ¿qué se puede asegurar sobre los valores medidos de V_{AB} y V_{BC} al margen de la posición de la terminal móvil del potenciómetro?

PRÁCTICA Nº 4 CORRIENTE EN UN CIRCUITO EN PARALELO

Objetivos:


- Verificar con experimentos que la corriente total en un circuito en paralelo es mayor que la corriente en cualquier rama.
- Verificar experimentalmente que la corriente total en un circuito en paralelo es igual a la suma de las corrientes en cada rama en paralelo.

Equipo:

- Fuente de alimentación Variable de O a 15 V de cd, regulada.
- MMD o VOM Miliamperímetro de O a IOmA.

Material:

- 1 de 820Ω
- 1 de 1kΩ
- 1 de 2.2 kΩ
- 1 de 3.3 kΩ
- 1 de 4.7 kΩ
- 1 interruptor de un polo un tiro.
- **1.** Mida la resistencia de cada uno de los cinco resistores y registre sus valores en la tabla 4-1.
- 2. Arme el circuito de la figura 4-A.
- **3.** Ajuste la fuente de alimentación, V_{FA} , a 10v.
- 4. Mida la corriente total, I_T
- 5. Mida la I_T en cada rama.
- 6. Mida V_{FA} , I_T , I_1 , I_2 , e I_3 y registre los valores en la tabla 4-2.
- 7. Suprima el resistor de 820 Ω de la rama 1. Mida I_T , I_2 , I_3 . Registre los valores en la tabla 4-2.
- 8. Suprima el resistor de $1k\Omega$ de la rama 2, de modo que solo quede en el circuito la rama 3. Mida I_T , I_3 , y registre los valores en la tabla 4-2.
- 9. Arme el circuito de la figura 4-B. Con un voltaje de 10v.
- 10. Mida V_{FA} , I_{I} , I_{2} , e I_{3} y registre los valores en la tabla 4-2.
- 11. Elimine el resistor de 1k Ω de la rama 1 Mida I_T , I_2 , I_3 , Registre los valores en la tabla 4-2.
- 12. Quite el resistor de $2.2k\Omega$ de la rama 2, quedando solo la rama 3. Mida I_T , I_3 , y registre.
- 13. Arme el circuito de la figura 4-C.
- 14. Mida V_{FA} , I_{I} , I_{2} , e I_{3} . Registre los valores en la tabla 4-2.
- 15. Suprima el resistor $2.2k\Omega$ de la rama 1. Mida I_T , I_2 e I_3 y registre.
- 16. Suprima el resistor $3.3k\Omega$ de la rama 2. Mida I_T , I_3 y registre.

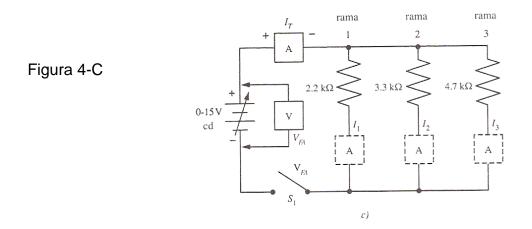


Tabla 4-1 Valores medidos de los resistores

Resistor	R_1	R_2	R_3	R_4	R_5
Valor nominal, Ω	820	1 k	2.2 k	3.3 k	4.7 k
Valor medido, Ω					

Tabla 4-2 Valores medidos y calculados del circuito en paralelo.

	Valo	r nomina	l de los res	intones de							
	vaio	rnomina	Ω	isiores ae	rama	V	mA				I_T calculada
Paso	R_1	R_2	R_3	R_4	R_5	V	I_T	I_1	I_2	I_3	(suma de las l de rama)
6	820	1 k			4.7 k						
7		1 k			4.7 k			X			
8					4.7 k				\times	-	
10		1 k	2.2 k	3.3 k							
11			2.2 k	3.3 k						-	
12				3.3 k							
14			2.2 k	3.3 k	4.7 k						
15				3.3 k	4.7 k						
16					4.7 k						

Cuestionario:

Explique como los resultados experimentales confirmaron los dos os de este experimento. Consulte los datos de la tabla 4-1 y 4-2 para tar su respuesta.
¿Por qué fue importante medir los valores de los resistores (paso 1)?
Explique el efecto de la corriente Total de resistores conectados en lo si: nenta el número de resistores. menta la resistencia de cada resistor. nte sus respuestas remitiéndose a la tabla 4-2.
Examine sus datos de las tablas 4-1, 4-2 ¿Qué relación general se entre la corriente de la rama y la corriente total del circuito? Enuncie esta n con sus propias palabras y después escriba la relación como fórmula ática.

PRÁCTICA Nº 5 RESISTENCIAS DE CIRCUITO EN SERIE-PARALELO

Objetivos:

- Verificar con experimentos las reglas para hallar la resistencia total, R_T , de un circuito serie paralelo.
- Diseñar una red serie-paralelo que cumpla requisitos específicos de corriente.

Equipo:

- Fuente de alimentación Variable de O a 15 V de cd, regulada.
- MMD o VOM Miliamperímetro de O a IOmA.

Material:

- 1 de 330Ω
- 1 de 470Ω
- 1 de 560Ω
- 1 de 1.2kΩ
- 1 de 2.2 kΩ
- 1 de 3.3kΩ
- 1 de 4.7 kΩ
- 1 de 10kΩ
- 1 interruptor de un polo un tiro.
- **1.** Mida la resistencia de cada resistor suministrado y registre su valor en la tabla 5-1.
- **2.** Conecte los resistores como en la figura 5-A y mida la resistencia entre A y D (R_T) y entre B y C (R_{BC}). Registre los valores en la tabla 5-2.
- 3. Conecte los resistores como en la figura 5-B y llene el segundo renglón de la tabla 5-2.
- **4.** Conecte los resistores como en la figura 5-C. Mida la resistencia entre A y G (R_T), entre B y C (R_{BC}) y entre D y F (R_{DF}); anote los valores en la tercera fila de la tabla 5-2.
- **5.** Conecte los resistores como en la figura 5-D. Llene el cuarto renglón con el valor de R_{DF} .
- **6.** Arme el circuito de la figura 5-E con un voltaje de 15v.
- 7. Mida el voltaje en R_1 , R_2 , la rama 1 puntos B y E (V_{BE}), la rama 2 (V_{CD}), puntos A y E (V_{AE}) y puntos B y F (V_{BF}) registre los resultados en la tabla 5-3.
- **8.** Con los mismos valores de los resistores diseñe un circuito de 4 resistores serie-paralelo de modo que el circuito extraiga una corriente total, I_T , de aproximadamente de 5mA con una fuente de cd de 10v.
- **9.** Después de armar el circuito mida y registre en la tabla 5-4 los valores de R_T , V_{FA} e I_T .

 $\begin{array}{c}
R_1 \\
470 \Omega \\
R_2 \\
470 \Omega
\end{array}$ $\begin{array}{c}
R_2 \\
470 \Omega
\end{array}$ $\begin{array}{c}
R_4 \\
470 \Omega
\end{array}$ $\begin{array}{c}
R_4 \\
470 \Omega
\end{array}$ $\begin{array}{c}
R_4 \\
1.2 k\Omega
\end{array}$ $\begin{array}{c}
R_4 \\
1.2 k\Omega
\end{array}$ $\begin{array}{c}
B \\
3.3 k\Omega
\end{array}$ $\begin{array}{c}
B \\
B \\
C \\
D
\end{array}$

Figura 5-B

Figura 5-C

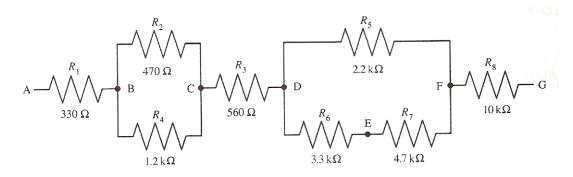


Figura 5-D

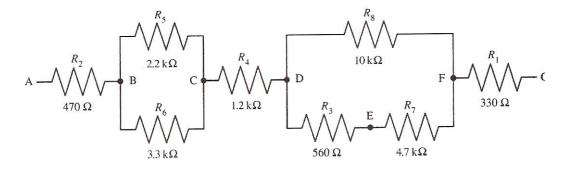


Figura 5-E

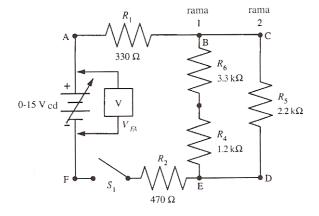


Tabla 5-1 Valores medidos de los resistores

Resistor	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8
Valor nominal, Ω	330	470	560	1.2 k	2.2 k	3.3 k	4.7 k	10 k
Valor medido, Ω								

Tabla 5-2 Método del óhmetro para determinar R_T en una red serie-paralelo

,	Valor medido, Ω		Valor calculado, Ω				
R_T	R_{BC}	R_{DF}	$R_T a)$	$R_{\rm BC}$	R_{DF}	$R_T b$)	
						de la Ca	
,							

Tabla 5-3 Voltaje de rama en una red serie-paralelo

V aplicado	V_1 (en R_1)	V ₂ (en R ₂)	Rama I V_{BE}	Rama 2 $V_{\rm CD}$	$V_{ m AE}$	$V_{ m BF}$

Tabla 5-4 Problema de diseño

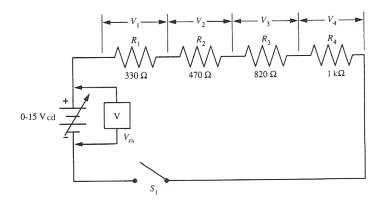
	Valores de diseño		Valores medidos				
V_A	I_T	R_T	$V_{F\!A}$	I_T	R_T		
10 V	5 mA						

Cuest 1.	ionario: Explique las reglas para encontrar la resistencia total de un circuito serie-paralelo.
2.	Explique por que es esencial desconectar la alimentación del circuito antes de medir la resistencia con un óhmetro.
3.	Explique por que cuando se mide el valor de un resistor en un circuito serie-paralelo, un extremo del resistor debe desconectarse del circuito.
4.	¿Qué confirman sus datos de las tablas 5-1 y 5-2 acerca de la resistencia total de un circuito serie-paralelo? Remítase a las mediciones específicas en las tablas para sustentar sus condiciones.
5.	¿Qué mediciones necesitara para hallar la corriente en cada resistor de un circuito serie-paralelo?

PRÁCTICA Nº 6 LEY DE VOLTAJES DE KIRCHHOFF (UNA FUENTE)

Objetivos:

- Hallar una relación entre la suma de las caídas de voltaje en resistores conectados en serie y el voltaje aplicado.
- Verificar con experimentos la relación que se estableció en el objetivo 1.


Equipo:

- Fuente de alimentación Variable de O a 15 V de cd, regulada.
- MMD o VOM

Material:

- 1 de 330Ω
- 1 de 47Ω
- 1 de 820 Ω
- 1 de 1 kΩ
- 1 de 1.2kΩ
- 1 de 2.2kΩ
- 1 de 3.3kΩ
- 1 de 4.7kΩ
- Interruptor de un polo un tiro
- 1. Mida cada uno de los resistores y registre su valor en la tabla 6-1
- **2.** Con V_{FA} = 15v y los valores nominales de cada resistor, calcule la caída de voltaje en R₁ (V_1), R₂ (V_2), R₃ (V_3) y R₄(V_4) de la figura 6-A, así como V_{FA} y la suma de los voltajes calculados.
- **3.** Arme el circuito de la figura 6-A ajuste la fuente a 15v.
- **4.** Mida y registre los valores de resistencia y voltaje, así como la suma de los voltajes, en la tabla 6-2.
- **5.** Con una fuente de alimentación de 15v y a partir de la figura 6-B calcule las caídas de voltaje V_1 , V_2 , V_3 , V_4 y V_5 . Registre los valores en la tabla 6-2. así como V_{FA} y la suma de los voltajes calculados.
- **6.** Arme el circuito de la figura 6-B.
- **7.** Mida los voltajes V_1 , V_2 , V_3 , V_4 y V_5 y registre los valores en la tabla 6-2.

Figura 6-A

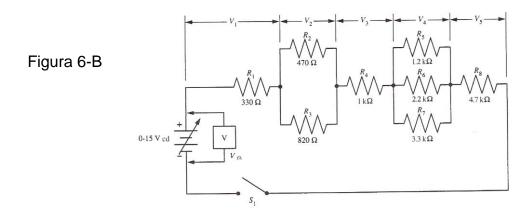
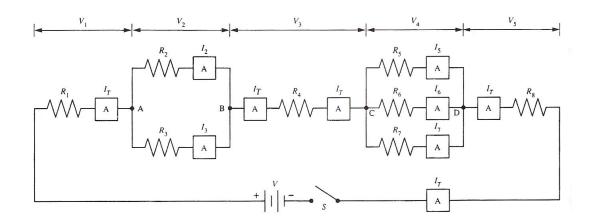


Tabla 6-1 valores de los resistores

	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8
Valor nominal, Ω	330	470	820	l k	1.2 k	2.2 k	3.3 k	4.7 k
Valor medido, Ω								


Tabla 6-2 verificación de la ley de voltajes de kirchhoff.

Paso	V_{EA} , V	V _I , V	V ₂ , V	V ₃ , V	V_4 , V	V ₅ , V	Suma de los V, V
2							
4							
5							
7							

 Enuncie la relación entre las caídas de voltaje en resistores conectados en serie y el voltaje aplicado al circuito.

2. Exprese su respuesta a la pregunta 1 como fórmula matemática.

3.	Α	partir	de	la	tabla	6-2,	sols	datos	experim	nentales	sustentan	sus
		•					,	2? (Re screpar		los da	tos reales o	de la

En una hoja tamaño carta diseñe el siguiente circuito serie-paralelo. El voltaje aplicado es de 35 V. La corriente que suministra la fuente de alimentación es de 5 mA. Utilice sólo los ocho resistores de la lista de material necesario (use los valores nominales mostrados). Dibuje un diagrama del circuito completamente rotulado; muestre todos los cálculos del diseño y las fórmulas empleadas. Las especificaciones del diseño permiten una desviación de corriente de ± 1 %; la fuente de voltaje no puede variar.

PRÁCTICA Nº 7 LEY DE CORRIENTES DE KIRCHHOFF

Objetivos:

- Hallar una relación entre la suma de las corrientes que entran en cualquier nodo de un circuito eléctrico y la corriente que sale de dicho nodo.
- Verificar con experimentos la relación planteada en el objetivo 1.

Equipo:

- Fuente de alimentación Variable de O a 15 V de cd, regulada.
- MMD o VOM Miliamperímetro de O a IOmA.

Material:

- 1 de 330Ω
- 1 de 470Ω
- 1 de 820 Ω
- 1 de 1 kΩ
- 1 de 1.2kΩ
- 1 de 2.2kΩ
- 1 de 3.3kΩ
- 1 de 4.7kΩ
- Interruptor de un polo un tiro
- **1.** Mida la resistencia de cada uno de los resistores y registre su valor en la tabla 7-1.
- **2.** Arme el circuito de la figura 7-A, con una alimentación de V_{FA} =15v.
- **3.** Mida las corrientes I_{TA} , I_2 , I_3 , I_{TB} , I_{TC} , I_5 , I_6 , I_7 , I_{TD} e I_{TE} y registre los valores en la tabla 7-2. calcule la suma de I_2 e I_3 , y la suma de I_5 , I_6 e I_7 y registre.
- 4. Diseñe un circuito serie-paralelo que conste de tres ramas en paralelo y dos resistores en serie. Las corrientes en las tres ramas en paralelo deben ser tales que la corriente en la segunda rama sea casi el doble de la de la primera rama, y la corriente en la tercera rama sea alrededor del triple de la primera. Dicho de otra manera, las corrientes en las tres ramas en paralelo guardan una proporción de 1:2:3 más o menos). La corriente total en le circuito es de 6mA el voltaje máximo es de 15v. Dibuje un diagrama completo del circuito que muestre los valores nominales de los resistores elegidos, la corriente calculada en cada línea y el voltaje aplicado. Exponga todos sus cálculos para hallar los valores de los resistores.
- **5.** Arme el circuito que diseñó en el paso 4. Mida las corrientes del circuito y registre los valores en la tabla 7-3.

Figura 7-A

Tabla 7-1 Valor medido de los resistores

	R_1	R_2	R_3	R_4	R_5	R_6	R ₇	R_8
Valor nominal, Ω	330	470	820	1 k	1.2 k	2.2 k	3.3 k	4.7 k
Valor medido, Ω								

Tabla 7-2 Verificación de la ley de las corrientes de kirchhoff

	I_{TA}	I_2	I_3	I_{TB}	I_{TC}	I_5
Corriente, mA						
			T	Γ		
	I_6	I_7	I_{TD}	I_{TE}	$I_2 + I_3$	$I_5 + I_6 + I_7$
Corriente, mA						

Tabla 7-3 Datos del diseño

	Valor calc	ulado, mA		Valor medido, mA			
Rama 1 I ₁	Rama 2 I ₂	Rama 3 I ₃	I_T	Rama I I ₁	Rama 2 I ₂	Rama 3 I ₃	I_T

	tionario: Explique la relación entre las corrientes que entran y salen de un nodo en un circuito.
2.	Escriba como fórmula matemática la relación que explicó en la pregunta 1.
3.	A partir de la figura 7-A, ¿qué información necesitaría para hallar I_2 e I en este circuito?
4.	En los pasos 4 y 5 del procedimiento se le pidió diseñar un circuito serie paralelo con V_{FA} máx. = 15 V e I_T = 6 mA. Los resistores R_1 , R_2 Y R_2 guardaban una proporción de 1:2:3. Analice sus resultados refiriéndose a los datos experimentales de la tabla 7-3. Su reporte debe indicar si se cumplieron con exactitud las especificaciones del diseño. Si no es así explique la discrepancia. También explique cómo eligió (o eliminó) cada uno de los resistores provistos. (Anexe a este reporte su diagrama de diseño del circuito.)

PRACTICA N°8 CIRCUITOS DIVISORES DE VOLTAJE (CON CARGA)

Objetivos:

- Hallar el efecto que tiene la carga en las relaciones de voltaje en un circuito divisor de voltaje.
- Verificar con experimentos los resultados del objetivo

Equipo:

- Fuente de alimentación Variable de O a 15 V de cd, regulada.
- MMD o VOM Miliamperímetro de O a IO mA.

Material:

- 3 de 1.2kΩ
- 1 potenciómetro de 10kΩ, 2w
- Interruptor de un polo un tiro
- 1. Arme el circuito de la figura 8-A
- **2.** Ajuste la fuente de alimentación a V_{FA} =10v, mida la I_1 (llamada corriente drenadora), el voltaje V_{BD} y el voltaje V_{CD} . Escriba sus respuestas en la tabla 8-1.
- **3.** Conecte el potenciómetro de 10 k Ω entre los puntos B y D como ilustra la figura 8-B. Con el voltímetro en paralelo con la fuente de alimentación ajuste el potenciómetro hasta que $I_L=2\text{mA}$ con $V_{FA}=10\text{v}$. Mida I_I , V_{BD} y V_{CD} . Registre en la tabla 8-1.
- **4.** Desconecte el potenciómetro del circuito y con un óhmetro mida la resistencia de carga, R_L , entre los puntos E y F. Este es el ajuste de la carga para I_L =2mA, registre en la tabla 8-1.
- **5.** Vuelva a conectar el potenciómetro entre B y D. ajuste el potenciómetro hasta que I_L = 4mA. Mida I_I , V_{BD} y V_{CD} . Registre los valores en la tabla 8-1.
- **6.** Desconecte el potenciómetro del circuito y mida la resistencia de carga como en el paso 4 registre en la tabla 8-1.
- 7. Vuelva a conectar el potenciómetro entre B y D. Ajuste el potenciómetro hasta que I_L = 6mA con V_{FA} =10v. Mida I_I , V_{BD} y V_{CD} . Registre los valores en la tabla 8-1.
- **8.** Desconecte el potenciómetro del circuito y mida la resistencia de carga. Este es el ajuste de de la carga para $I_L = 6$ mA. Registre en la tabla 8-1
- **9.** Utilice los métodos correspondientes para calcular la corriente drenadora I_1 , los voltajes V_{BD} y V_{CD} y la resistencia de carga R_L en cada una de sus condiciones de carga (0mA, 2mA, 4mA, 6mA). Registre sus respuestas en la tabla 8-1.

Figura 8-A

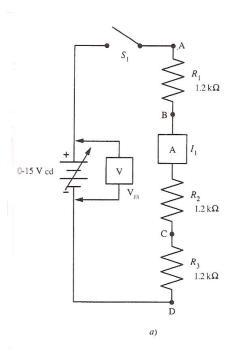


Figura 8-B

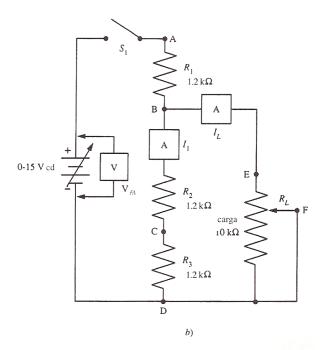


Tabla 8-1 Efecto de la carga en un divisor de voltaje.

				Valores	medidos			Valores o	calculados	
Pasos	V	I _L (corriente de carga) mA	I _I , mA	$V_{\mathrm{BD}}, \ V$	V_{CD}, V	R_L , Ω	I _I , mA	$V_{\mathrm{BD}},\ V$	$V_{\mathrm{CD}},\ V$	R_L Ω
2	10	0				\times				
3, 4	10	2								
5, 6	10	4								
7	10	6								

Cı		ionario:
	1.	Explique el efecto de una carga en las relaciones de voltaje en ur circuito divisor de voltaje.
	2.	A partir de los datos de la tabla 8-1, ¿Qué efecto tiene un cambio en la resistencia de carga sobre la corriente de carga? De ejemplos específicos con base en sus datos. Explique la razón de este efecto.

3.	Con base en los datos de la tabla 8-1 ¿Cómo se afecta la corriente drenadora, I_I , por los cambios en la corriente de carga, I_L ? Presente ejemplos específicos a partir de sus datos. Explique la razón de efecto.
4.	Respecto a la figura 8-B y la tabla 8-1, ¿Qué efecto del divisor tienen los cambios en la corriente de carga, I_L , en los voltajes de las derivaciones V_{CD} y V_{BD} ? Presente ejemplos específicos a partir de sus datos. Explique la razón de efecto.
5.	Compare los valores medidos de I_I , V_{BD} , V_{CD} y R_L con los valores calculados. Explique cualesquiera diferencias.

PRÁCTICA Nº 9 DISEÑO DECIRCUITOS DIVISORES DE VOLTAJE Y CORRIENTE

Objetivos:

- Diseñar un divisor de voltaje que cumpla requisitos específicos de voltaje v corriente.
- Diseñar un divisor de corriente que cumpla requisitos específicos de corriente y voltaje.
- Construir y probar los circuitos para ver si cumplen los requisitos del diseño.

Equipo:

- Fuente de alimentación Variable de O a 15 V de cd, regulada.
- MMD o VOM Miliamperímetro de O a IO mA.

Material:

- Especifique los resistores de ½ W, 5% requeridos por su diseño.
- Interruptor de un polo un tiro.

A. Diseño del divisor de voltaje

- A1. Diseñe un circuito divisor de voltaje para una fuente de alimentación regulada de 15v. El circuito debe alimentar una carga de 3 mA a 9 V. Dibuje un diagrama del circuito que muestre los valores de todos los componentes y los voltajes y corrientes significativos en todo el circuito. El circuito debe incluir un interruptor de un polo un tiro para encender o apagar la alimentación. Presente su diseño en un reporte claro y organizado, listando todos los componentes que requirió. Muestre todos los cálculos que condujeron a los componentes del diseño.
- A2. Arme el circuito divisor de voltaje que diseñó en el paso A1.
- A3. Elabore una tabla para registrar los valores calculados y medidos de los voltajes y las corrientes de diseño. También mida con un óhmetro la resistencia de cada resistor de su diseño. Mida los voltajes y corrientes importantes en su circuito y registre los valores en la tabla que elaboró.

B. Circuito divisor de corriente

- B1. Diseñe un circuito divisor de corriente que alimente tres cargas en paralelo con una fuente de alimentación de 15 V. La corriente total que suministra la fuente es de 5 mA a 10 V. Las corrientes de rama se dividirán como sigue:
- A) La corriente en la rama 2 debe ser 1½ veces mayor que en la rama l.
- B) La corriente en la rama 3 debe ser 2 ½ veces mayor que en la rama l.

En otras palabras, las corrientes por las tres ramas se dividen en proporción de (1: 1.5:2.5).

Dibuje el diagrama del circuito que diseñó con los valores de todos los componentes y los voltajes y las corrientes importantes en todo el circuito. Presente su diseño en un reporte claro y organizado, listando todos los

componentes que requirió. Muestre todos los cálculos que condujeron a los componentes del diseño.

- B2. Arme el circuito divisor de corriente que diseñó en el paso B I.
- B3. Elaboré una tabla para registrar los valores calculados y medidos de los voltajes y corrientes de diseño. Con un óhmetro mida la resistencia de cada resistor de su diseño. Mida los voltajes y corrientes significativos en su circuito y registre los valores en la tabla que elaboró.

Cuestionario:
 a) Diagrama del circuito y cálculos para el diseño de la parte A.
b) Tabla de valores calculados y medidos de los voltajes y las corrientes diseño, (paso A3).

2. a) Diagrama del circuito y calculados para el diseño de la parte B.

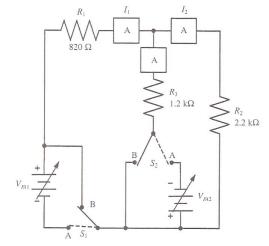
-	Tabla de valores medidos y calculados de los voltajes y las corrientes de paso 3).
3.	Compare los valores medidos de la corriente con los valores de diseño de la parte A. consulte sus datos de la tabla de la pregunta 1 b) Explique las posibles diferencias.
4.	Compare los valores medidos de la corriente con los valores de diseño de la parte B. Consulte los datos de la tabla de la pregunta 2 b). Explique cualquier diferencia.

PRÁCTICA Nº 10 TEOREMA DE SUPERPOSICIÓN

Objetivos:

Verificar con experimentos el teorema de superposición.

Equipo:


- Fuente de alimentación Variable de O a 15 V de cd, regulada.
- MMD o VOM Miliamperímetro de O a 100 mA.

Material:

Resistores (1/2 W, 5%)

- 1 de 820Ω
- 1 de 1.2 kΩ
- 1 de 2.2 kΩ
- 2 interruptores de un polo dos tiros.
- **1.** Arme el circuito de la figura 10-A. Observe con cuidado la polaridad de las fuentes.
- **2.** Ajuste su voltaje de modo que V_{FA1} = 15v, Ponga el interruptor S₁ en la posición A y S₂ en la posición B, con lo que alimentará a R_1 , R_2 , R_3 . Mida I₁, I₂ e I_3 los voltajes V_1 en R_1 , V_2 en R_2 y V_3 en R_3 ; registre los valores en la tabla 10-1. Es importante que indique el sentido de la corriente (mediante signos + -).
- **3.** Ponga S₁ en la posición B. Ajuste la fuente de alimentación 2 de modo que $V_{FA2} = 10 \text{ V}$. Ponga S2 en la posición A, con lo que alimentará a R_1 , $R_2 Y R_3$. Mida I_1 , I_2 e I_3 los voltajes V_1 en R_1 , V_2 en R_2 y V_3 en R_3 ; registre los valores en la tabla 10-2.
- **4**. Con $V_{FA1} = 15 \text{ V Y } V_{FA2} = 10 \text{ V}$, ponga S_1 en la posición A (S_2 ya debe estar en la posición B). Ahora ambas fuentes alimentan a R_1 , R_2 Y R_3 . Mida, I_1 , I_2 , I_3 V_1 , V_2 Y V_3 y registre los valores en la tabla 10-3 indicando la polaridad de cada valor.
- **5.** Con los valores medidos de R_1 R_2 Y R_3 Y V_{FA1} = 15 V Y V_{FA2} = 10 V, calcule I_1 , I_2 e I_3 que suministren las dos fuentes mediante el teorema de superposición Muestre todos los cálculos y diagramas, y registre los valores calculados en la tabla 10-3.

Figura 10-A

Tabla 10-1 Efecto de V_{FA1}

Corriente, mA	Voltaje, V
<i>I</i> ₁ :	V_1 :
<i>I</i> ₂ :	V_2 :
<i>I</i> ₃ :	V ₃ :

Tabla 10-2 Efecto de V_{FA2}

Corriente, mA	Voltaje, V
<i>I</i> ₁ :	V_1 :
<i>I</i> ₂ :	V_2 :
I ₃ :	V ₃ :

Tabla 10-3 Efecto de V_{FA1} y V_{FA2} actuando juntas.

	Valores m	iedid	os						Valores	calci	ulados				
					$V_{F\!\!A1}$	Sólo)		$V_{\it FA2}$	Sólo	•		$V_{FA1} y V$	_{FA2} jı	ıntas
Co	rriente, mA	V	oltaje, V	Cor	riente, mA	Ve	oltaje, V	Cor	riente, mA	V	oltaje, V	Cor	rriente, mA		Voltaje, V
I_1		V_1		I_1		V_1		I_1		V_1		I_1		V_1	
I_2		V_2		I_2		V_2		I_2		V_2		I_2		V_2	
I_3		V_3		I_3		V_3		I_3		V_3		I_3		V_3	

Cuestionario:

 Explique como se utiliza el teorema de superposición para hallar las corrientes en un circuito alimentado por más de una fuente de voltaje.

	superposición? Cite datos específicos de las tablas.
3.	¿Por qué es importante incluir el signo de polaridad al registrar el va de la corriente en el paso 2?
4.	Si en la figura 10-A la polaridad de ambas fuentes de alimentación se invirtiera, ¿Cómo afectaría la corriente en R_2 ?

PRÁCTICA Nº 11 TEOREMA DE THEVENIN

Objetivos:

- Determinar el voltaje (V_{TH}) y la resistencia (R_{TH}) equivalentes de thevenin en un circuito de c.d. con una sola fuente de voltaje.
- Verificar con experimentos los valores de V_{TH} Y R_{TH} analizar un circuito serie-paralelo.

Equipo:

- Fuente de alimentación Variable de O a 15 V de cd, regulada.
- MMD o VOM Miliamperímetro de O a 5 mA.

Material:

Resistores (½ W, 5%)

- 1 de 330Ω
- 1 de 390Ω
- 1 de 470 kΩ
- 1 de 1 kΩ
- 1 de 1.2 kΩ
- 2 de 3.3 kΩ
- 1 potenciómetro de 5 kΩ, 2W
- 2 interruptores de un polo un tiro.
- 1. Mida con un óhmetro la resistencia de cada uno de los siete resistores provistos y registre los valores en la tabla 11-1.
- **2.** Arme el circuito de la figura 11-A con $R_L = 330\Omega$. Ajuste $V_{FA}= 15v$ cierre S₁ y S₂ y mida I_L , la corriente en el resistor de carga, R_L . Registre este valor en la tabla 11-2 en el primer renglón de "circuito original".
- 3. Con S1 cerrado y S2 abierto mida el voltaje entre B y C (figura 11-A). Este es el voltaje V_{TH} ; anote el valor en la tabla 11-2 en el renglón de 330 Ω , columna " V_{TH} medido".
- **4.** Retire la fuente desconectándola de A y D. Ponga en cortocircuito AD conectando un alambre entre los dos puntos.
- **5.** Con S₂ aún abierto conecte un óhmetro entre B y C para medir la resistencia entre estos puntos, R_{TH} , Registre el valor en la tabla 11-2 en el renglón de 330 Ω , columna " R_{TH} medida".
- **6.** Ajuste la fuente de alimentación hasta que $V_{FA} = V_{TH}$ Conecte el óhmetro al potenciómetro y ajuste la resistencia hasta que sea igual a R_{TH} .
- 7. Desconecte el resistor de carga de 330Ω , S_2 y el miliamperímetro del circuito de la figura 11-A y conéctelos como indica la figura 11-B. Con S_2 abierto y la fuente encendida, verifique si $V_{FA} = V_{TH}$.
- **8.** Cierre S₂, mida I_L y anote el valor en la tabla 11-2 en el renglón de 330 Ω , columna "Circuito equivalente de Thevenin, medida".
- **9**. Con los valores medidos de V_{FA} , R_1 , R_2 , R_3 Y R_4 (tabla 11-1) calcule V_{TH} en el circuito de la figura 11-A. Registre su respuesta en la tabla 11-2 en el renglón de 330 Ω , columna " V_{TH} , calculado". **10**. Calcule R_{TH} en la figura 11-A con los valores medidos de R_1 , R_2 , R_3 Y R_4 .
- **10**. Calcule R_{TH} en la figura 11-A con los valores medidos de R_1 , R_2 , R_3 Y R_4 . (Las fuentes de alimentación de voltaje regulado en general tienen resistencia despreciable.) Registre su respuesta en la tabla 11-2 en el renglón de 330 Ω , columna " R_{TH} , calculada".

- **11.** Con los valores de V_{TH} y R_{TH} calculados en los pasos 9 y 10 que aparecen en la tabla 11-2, calcule l_L . Registre su respuesta en la tabla 11-2 en el renglón de 330 Ω , columna " l_L , calculada".
- **12.** Sustituya R_L por un resistor de 1 k Ω en el circuito de la figura 11-A. Encienda la fuente y ajuste V_{FA} en 15 V; cierre S_1 y S_2 ' Mida I_L y escriba el valor en la tabla 11-2 en el renglón de 1 k Ω , columna " I_L , medida, circuito original".
- **13.** Retire el resistor de carga R_L de 1 kΩ Y conecte el de 3.3 kΩ. Ajuste V_{FA} en 15 V, si es necesario. Cierre S_2 ' Mida I_L y anote el valor en el renglón de 3.3 KΩ, columna " I_L , medida, circuito original".
- **14.** Arme el circuito equivalente de Thevenin como ilustra la figura 11-B con el resistor de carga de 1 k Ω en lugar del de 330 Ω . V_{TH} y R_{TH} deben ser los valores medidos anotados en la tabla 11-2 en el rengión de 330 Ω
- los valores medidos anotados en la tabla 11-2, en el renglón de 330 Ω . **15.** Ajuste V_{FA} en V_{TH} Cierre S₂ y mida I_L Registre el valor en la tabla 11-2 en el renglón de 1 k Ω , columna " I_L , medida, circuito equivalente de Thevenin".
- **16.** Retire el resistor de 1 k Ω Y conecte el resistor de carga de 3.3 k Ω . Cierre S₂ y mida I_L . Registre el valor en la tabla 11-2 en el renglón de 3.3 k Ω , columna " I_L , medida, circuito equivalente de Thevenin".
- 17. Calcule I_L para $RL = 1 \text{ k}\Omega \text{ y } R_L = 3.3 \text{ k}\Omega$ en el circuito de la figura 11-A, con los valores medidos de R_1 , R_2 , R_3 , R_4 y R_L ; registre sus respuestas en la tabla 11-2.

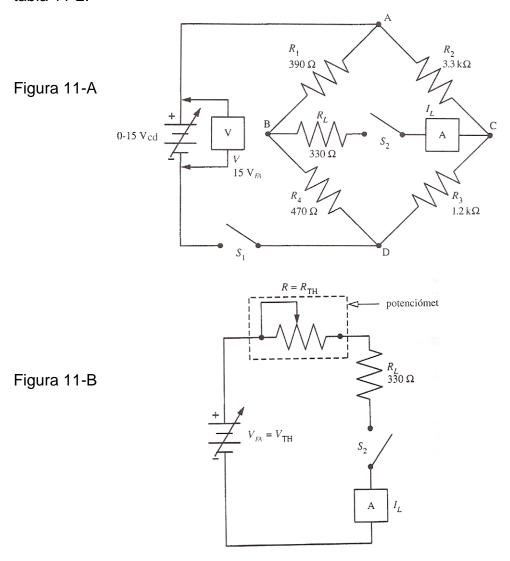


Tabla 11-1 Valores medidos de los resistores.

Resistor	Valor nominal, Ω	Valor medido, Ω
R_1	390	
R_2	3.3 k	
R_3	1.2 k	
R_4	470	
R_L	330	
R_L	1 k	
R_L	3.3 k	

Tabla 11-2 Mediciones para verificar el teorema de Thevenin.

	V_{TH}	, V	R_{Th}	,, Ω		I_L , mA	
					Ме	dida	
R_{L} Ω	Medido	Calculado	Medida	Calculada	Circuito original	Circuito equivalente de Thevenin	Calculada
330							
1 k							
3.3 k							

Cuestionario:

r	Explique como se usa el teorema de Thevenin para convertir cualquie ed lineal de dos terminales en un circuito simple equivalente que const le una resistencia en serie con una fuente de voltaje.

2.	A partir de los datos de la tabla 11-2, ¿cómo se comparan los valores de I_L medidos en el circuito original (figura 11-A) con los medidos en e circuito equivalente de Thevenin (figura 11-B)? ¿Las mediciones correspondientes deben ser iguales? Explique por qué.
3.	Con base en la tabla 11-2 compare los valores calculados y medidos de R_{TH} ¿Los resultados son los que esperaba? Explique. Haga la misma comparación con los dos valores de V_{TH} .
 4.	Explique una ventaja del teorema de Thevenin cuando se buscan las corrientes de carga en un circuito de cd.

PRÁCTICA Nº 12 TEOREMA NORTON

Objetivos:

- Determinar los valore de la fuente de corriente constante de Norton, I_N y la resistencia de la fuente de corriente de Norton, RN, en un circuito de cd con una o dos fuentes de voltaje.
- Verificar con experimentos los valores de I_N y R_N en el análisis de redes complejas de cd con dos fuentes de voltaje.

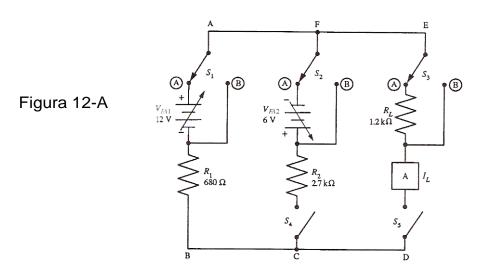
Equipo:

- 2 fuentes de alimentación Variables de O a 15 V de cd, reguladas.
- MMD o VOM Miliamperímetro de O a 5 mA.

Material:

Resistores (½ W, 5%)

- 1 de 330Ω
- 1 de 560Ω
- 1 de 680Ω
- 1 de 1.2kΩ
- 1 de 1.8 kΩ
- 1 de 2.7 kΩ
- 1 potenciómetro de 10 kΩ, 2w
- 2 interruptores de un polo un tiro
- 3 interruptores de un polo dos tiros


A. Determinación de I_N y R_N

- A1. Con S_4 y S_5 abiertos y los interruptores S_1 , S_2 y S_3 en la posición (A), arme el circuito de la figura 12-A.
- A2. Encienda V_{FA1} y V_{FA2} Ajuste los voltajes de la fuente de modo que V_{FA1} = 12 v y V_{FA2} = 6 V. (Observe con cuidado la polaridad correcta de las conexiones.) Mantenga estos voltajes durante el experimento. Cierre S₄ y S₅. Mida I_L por RL y registre los resultados en la tabla 12-1 en el renglón de 1.2 k Ω , columna " I_L , medida, circuito original".
- A3. Reemplace R_L por resistores de 390 Ω , 560 Ω Y 1.8k Ω . En cada caso, mida I_L y anote los valores en la columna " I_L , medida, circuito original".
- A4. Mueva S₃ a la posición (B), con lo que R_L se reemplaza por un cortocircuito. La corriente medida por el medidor es la de cortocircuito del generador equivalente de Norton, I_N Escriba el valor en la tabla 12-1 en el renglón de 1.2 k Ω , columna " I_N , medida".
- A5. Cambie SI, S2 y S3 a la posición (B) y abra S₅, con lo que las fuentes de voltaje se reemplazan por cortocircuitos y abre el circuito de carga entre D y E. S₄ permanece cerrado.
- A6. Mida con un óhmetro la resistencia entre C y F. Ésta es la resistencia en paralelo con el generador equivalente de Norton, R_N, Registre este valor en la tabla 12-1 en el renglón de 1.2 kΩ, columna "R_N, medida".
 A7. A partir del circuito de la figura 12-A calcule el valor de la corriente
- A7. A partir del circuito de la figura 12-A calcule el valor de la corriente de Norton, I_N , y regístrelo en la tabla 12-1 en el renglón de 1.2 k Ω , columna " I_N , calculada".
- A8. Con base en el circuito de la figura 12-A calcule el valor de la resistencia de derivación de Norton, R_N , y anótelo en la tabla 12-1 en el renglón de 1.2 k Ω , columna " R_N , calculada".

A9. Con los valores de I_N y R_N de los pasos A7 y A8 calcule la corriente de carga, l_2 para los resistores de carga de 1.2 k Ω , 390 Ω , 560 Ω y 1.8 k Ω de la figura 12-A. Escriba estos valores en la tabla 12-1 en la columna " I_L , calculada".

B. Empleo del circuito equivalente de norton

- B1. Con S₁ **abierto** arme el circuito de la figura 12-B con R_L = 1.2 k Ω . El medidor A₁ medirá la corriente de Norton, I_N , y el medidor A₂, la corriente de carga, I_L . El potenciómetro hará las veces de R_N , Con un óhmetro ajuste el potenciómetro hasta que su resistencia sea igual a R_N .
- B2. Ajuste la fuente de alimentación en su voltaje de salida más bajo. Poco a poco aumente la salida de la fuente de alimentación hasta que la corriente que mide el amperímetro A₂ sea igual al valor de *I*_N. Registró en la tabla 12-1.
- B3. Con el medidor A_1 midiendo I_N , anote la corriente de carga, I_1 , que mide el medidor A_2 en la tabla 12-1, renglón de 1.2 k Ω , columna " I_L , medida, circuito equivalente de Norton".
- B4. Con cada uno de los demás resistores de carga de la tabla 12-1 arme el circuito equivalente de Norton (figura 12-B) y mida I_L para cada valor de R_L . Registre los valores en la tabla 12-1 en la columna " I_L , medida, circuito equivalente de Norton".

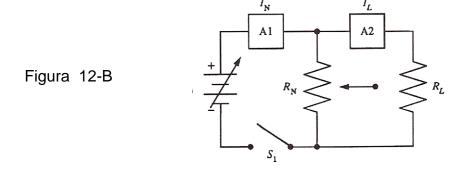


Tabla 12-1 mediciones para verificar el teorema de Norton.

	$I_{ m N}$,	mA	R_{N}	ψ, Ω		I_L , mA	
						Medida	
R_{L} Ω	Medida	Calculada	Medida	Calculada	Circuito original	Circuito equivalente de Norton	Calculada
1.2 k							-
390							7
560							3-
1.8 k							

Cuest 1.	tionario: Explique cómo se utiliza el teorema de Norton para convertir cualquier red lineal de dos terminales en un circuito simple que conste de una fuente de corriente constante en paralelo con una resistencia.
2.	Respecto a los datos de la tabla 12-1, ¿cómo se comparan los valores medidos de I_L en el circuito original (figura 12-A) con los medidos en el circuito equivalente de Norton (figura 12-B)? ¿Las mediciones correspondientes deberían ser iguales? Explique por qué.

3.	A partir de la tabla 12-1 compare los valores medidos y calculados de
	In ¿Los resultados son los que esperaba? Explique. Haga la misma
	comparación con los dos valores de R_N .
	-
_	
4.	h 1
	corrientes de carga en un circuito de cd.
	corrientes de carga en un circuito de cd.
	corrientes de carga en un circuito de cd.
	corrientes de carga en un circuito de cd.
	corrientes de carga en un circuito de cd.
	corrientes de carga en un circuito de cd.
	corrientes de carga en un circuito de cd.
	corrientes de carga en un circuito de cd.

PRÁCTICA Nº 13 TEOREMA DE MILLMAN

Objetivos:

Verificar con experimentos el teorema de Millman

Equipo:

- 2 fuentes de alimentación Variables de O a 15 V de CD, reguladas.
- 2 MMD o VOM
- Amperímetro de O a 100 mA de cd.

Material:

Resistores (½ W, 5%)

- 4 de 68Ω
- 1 de 100Ω
- 2 Interruptores de un polo un tiro.
- 1. Mida con un óhmetro la resistencia de los cinco resistores del experimento. Identifíquelos por R₁a R₄ y RL Y conéctelos en los circuitos siguientes según esta designación. Registre los valores de resistencia medidos en la tabla 13-1.
- **2.** Arme el circuito de la figura 12-A. Utilice los resistores identificados como R_1 y R_2 ; este es el circuito 1.
- **3.** Aumente el voltaje de salida de V₁ hasta 15 V. Mida la corriente en el circuito y registre su valor en la tabla 13-2.
- **4.** Arme el circuito de la figura 13-B. Use el resistor identificado como R₃ en este circuito; este es el circuito 2.
- **5.** Aumente el voltaje de V_2 hasta 10 V. Mida la corriente en el circuito y anote su valor en la tabla 13-2.
- **6.** Arme el circuito de la figura 13-C. Use los resistores identificados como R_4 y R_L . Registre la lectura del amperímetro en la tabla 13-2; este es el circuito 3.
- 7. Arme el circuito de la figura 13-D, este es el circuito 4.
- **8.** Mida con un óhmetro la resistencia del circuito entre C y G. Anote este valor en la tabla 13-2.
- **9.** Arme el circuito de la figura 13-E, este es el circuito 5.
- **10.** $V_1 = 15v$
- **11.** $V_2 = 10v$
- **12.** Mida el voltaje entre C y G Y registre el valor en la tabla 13-2.
- **13.** Con la corriente total medida en los circuitos 1,2 y 3 y la resistencia total del circuito 4, calcule el voltaje entre C y G.
- **14.** Calcule el voltaje entre C y G según la fórmula del teorema de Millman; registre la respuesta en la tabla 13-2.

Figura 13-A

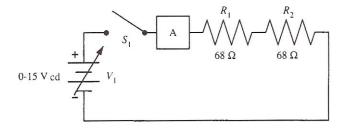


Figura 13-B

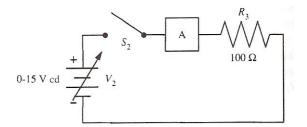


Figura 13-C

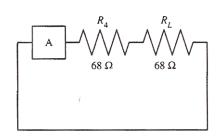


Figura 13-D

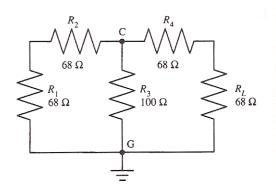


Figura 13-E

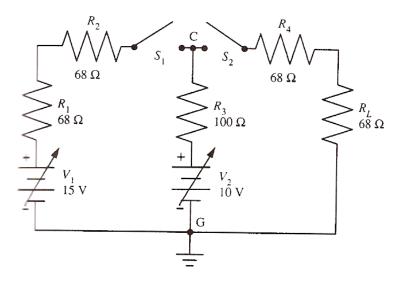


Tabla 13-1 Mediciones de la resistencia.

Resistor	R_1	R_2	R_3	R_4	R_L
Valor nominal, Ω	68	68	100	. 68	68
Valor medido, Ω					

Tabla 13-2 Verificación del teorema Millman.

Circuito	Voltaje, V	*Corriente medida, mA	Resistencia total medida, Ω	Voltaje medido entre C y G, V	V _{CG} calculado con la corriente y la resistencia medidas, V	V _{CG} calculado con el teorema de Millman y los valores nominales, V
1	15					
2	10					
3	0					
4	0					
5						

				ıa		

Explique como se en cd. En su aplic		•	

2.	Compare los tres valores de $V_{\rm CG}$ en la tabla 13-2para el circuito 5 (figura 13-E). ¿Deberían ser iguales? Explique por que.
_	
3.	Explique una ventaja del teorema de Millman para analizar un circuito de CD.
3. 	
3. 	
3.	

BIBLIOGRAFÍA

Titulo: Análisis de Circuitos en Ingeniería

Autor : William H. Hayt Jr. Editorial: Mc Graw-Hil

Titulo: Fundamentos de Circuitos Eléctricos

Autor : William H. Hayt Jr. Editorial: Mc Graw-Hil

Titulo: Análisis de Circuitos Eléctricos

Autor: Robert Boylestad Editorial: Thomson